INTEGRATED DECISION SUPPORT TOOL FOR OPTIMAL EXPLOITATION OF GEOTHERMAL RESOURCES. A THERMODYNAMIC, THERMO-ECONOMIC, AND ENVIRONMENTAL APPROACH

CLAUDIO ZUFFI WP9 GAA- UNIVERSITY OF FLORENCE (UNIFI)

LEAP-RE

Long-Term Joint EU-AU Research and Innovation Partnership on Renewable Energy

LEAP-RE STAKEHOLDER FORUM KIGALI, 10-13 OCTOBER 2023

The LEAP-RE project has received funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement 963530.

LEAP – RE project

Introduction

WP9 - Geothermal Atlas for Africa

Location and characteristic of **low to high enthalpy geothermal** resources for the development of African **electricity production**, plus a range of **direct heat/cold use applications**

Introduction

LEAP – RE project

WP9 - Geothermal Atlas for Africa

Location and characteristic of **low to high enthalpy geothermal** resources for the development of African **electricity production**, plus a range of **direct heat/cold use applications**

Context Analysis

Development of a **decision-making tool** to define which is the best system for the exploitation of geothermal

resources in terms of thermodynamic performance , economic costs and environmental impacts

250		200		150				 100 	I	I	I		50
Flash /dry steam p	ower plant OI ut parameter	RC power plant	Refrigeratio	on Absorption C	ycle	Hi	← −	erature He	eat pump	===	- •	Di	- + irect use
Parameter T	Range	Units	_										
r _{geo}	1-200	kg/s	L										
x _{geo}	0-1	-			TL	Orr			mi				
200.00 180.00 140.00 0 120.00 0 00 0 00 0 00 0 00 100.00 120.00 140.00 100.00 120.00 140.00 100.00 120.00 140.00 100.000 100.000 100.00000000		2.00 1.80 1.60 1.40 1.20 90 1.00 1.00 1.00 0.80 0.60 0.60 0.40 0.20 0.00 0.00 0.00 0.00 0.00 0.0											

25<mark>0</mark> 200 150 100 50 Flash /dry steam power plant **ORC power plant Refrigeration Absorption Cycle Direct use High Temperature Heat pump ELECTRICITY PRODUCTION:** Flash/Dry steam power plant **Binary Organic Rankine Cycle ORC** power plant HE **HEAT / COLD PRODUCTION: High Temperature Heat Pump** HTHP. **Refrigerator** absorption system R-ABS(absorption water-ammonia). **DIRECT USE:** Heat Exchangers HE. •

Thermodynamic performance

Economic cost

Data collection and **economic correlations** regarding the energy systems sector, for the surface plant, and economic correlations for other necessary elements such as **geothermal wells**:

 $K_1, K_2, K_3 = \text{correction parameter K}$ A = capacity or size of the equipment

 C_1, C_2, C_3 = correction parameter C

P = Pressure level [bar gauge]

 F_{M} = Material factor

 B_1 , B_2 = Correction parameter B

Geothermal v	wells
INTERNATIONAL JOURNAL OF ENVIRONMENTAL STUDIES 2021, VOL. 78, NO. 6, 1022–1036 https://doi.org/10.1080/00207233.2021.1905309	Routledge Taylor & Francis Group
ARTICLE	Check for updates
Feasibility study and economic analysis drilling	of geothermal well
Moein Shamoushaki, Daniele Fiaschi, Giampaolo Manfri and Lorenzo Talluri	ida, Pouriya H. Niknam
Department of Industrial Engineering, University of Florence, Firenze,	Italy

Environmental impact

Life Cycle Assessment approach. ISO14040 and ISO14044 standard

- No available correlation between system and environemntal impact
- Different systems need different LCI
- No many available inventories

LCA FRAMEWORK

Work progress....

		Thermodynamic model	Metamodel	Economic evaluation	Environmental evaluation
Power plant	Flash/dry steam			★	
rower plant	ORC			★	
Heat or cold	HTHP			×	
production	R-ABS				
Direct use	HE		×		

Validation of thermodynamic metamodel

Qualtra is an ORC system of 10 MW. The geothermal resource condition are: T_{geo} = 180°C; m_{geo} = 32.9 kg/s; x_{geo} = 1

Bagnore is an Flash power plant of 60 MW (three turbine of 20 MW). The geothermal resource condition are: T_{geo} = 155°C; m_{geo} = 118.4 kg/s; x_{geo} = 0

Chiusdino is a Dry Steam Power plant of 20 MW. The Geothermal resource condition are:

$$T_{geo}$$
= 299°C; m_{geo} =117.6 kg/s; x_{geo} = 1

	Power plant	Real case	Metamodel	Error	
	name	[MW]	[MW]	[%]	
Power plant - ORC	Qualtra	12.7	12.9	1.57%	
Power plant - Flash	Bagnore	22.7	22.1	2.64%	
Power plant - Dry steam	Chiusdino	22.3	23.035	3.30%	

Results / Preliminary Results - 2

Evaluation of environmental impact

- Development of a decision-making tool for finding the best solution for exploiting the geothermal resource with respect to thermodynamic, economic, and environmental performance indicators
- The metamodels of the power plants have been validated
- The environmental model has been completed for medium and low enthalpy uses

Next steps..

- We are working on the metamodels of HTHP and HE for different target uses
- Economic evaluation of different systems
- The environmental model of the wells and power plants is in the process of data collection for the development of the final model. [University College of London]

INTEGRATED DECISION SUPPORT TOOL FOR OPTIMAL EXPLOITATION OF GEOTHERMAL RESOURCES. A THERMODYNAMIC, THERMO-ECONOMIC, AND ENVIRONMENTAL APPROACH

THANKS FOR YOUR ATTENTION!

CLAUDIO ZUFFI

claudio.zuffi@unifi.it

LEAP-RE STAKEHOLDER FORUM KIGALI, 10-13 OCTOBER 2023

LEAP-RE

Long-Term Joint EU-AU Research and Innovation Partnership on Renewable Energy

The LEAP-RE project has received funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement 963530.