ARCHETYPES OF RURAL USERS IN SSA FOR LOAD DEMAND ESTIMATION

NICOLÒ STEVANATO SETADISMA - POLIMI

LEAP-RE

Long-Term Joint EU-AU Research and Innovation Partnership on Renewable Energy

LEAP-RE STAKEHOLDER FORUM KIGALI, 10-13 OCTOBER 2023

The LEAP-RE project has received funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement 963530.

Energy Modelling has proved to be a key element in assisting **energy planning** and in supporting scientifically sound **energy policy** decisions

They all rely on the same principle:

LEAP-RE

$$\sum$$
 Supply = \sum Demand

- Demand is Exogenous to the models
- Majority of Research has focused on characterization of supply
- How much does demand influence the results?

Logical Framework

Definition of Users Archetypes

Aggregation into Load Curves

Standard Approach: Top-Down assignation of daily consumption tiers

Novel Approach: Top-Down assignation of archetypical load profiles with a Bottom-Up construction

https://github.com/SESAM-Polimi/MicroGridsPy-SESAM

Village Demand Estimation

- The selected village-specific RWIs have been assumed to represent the mean of a normal probability distribution, with a standard deviation approximated by the RWI data related to the village district.
- The five wealth tiers have been represented by five RWI intervals in the range [-2,+2].
- The probability of RWI lying in each tier has been calculated from each village-specific normal distribution and applied to the total number of households to populate each wealth tier.

Preliminary Results

Aggregated Hourly Load Profile of the Village	
	С

Village	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5
Fanisau	0	1	32	124	68
Eliye Springs	0	37	162	7	0
Chissinguane	0	2	37	3	0

Village	PV Capacity [kW]	Storage Capacity [kWh]	LCOE [USD/kWh]	Curtailment Share [%]
Fanisau	264	284	0.9	41
Eliye Springs	35	88	0.94	67
Chissinguane	45	74	1.15	65

Conclusions

- Load Demand is a key aspect of energy modelling, often disregarded or assigned a-priori
- We developed a set of archetypes, with geographical validity of SSA, for rural users characterization
- Coupling such archetypes with Geographically Referenced Data represents a tool for load curve estimation for potentially any rural village in SSA
- The ease of use and vast applicability of this approach makes it a good first approximation for national energy acess planning strategies

ARCHETYPES OF RURAL USERS IN SSA FOR LOAD DEMAND ESTIMATION

NICOLÒ STEVANATO SETADISMA - POLIMI

LEAP-RE

Long-Term Joint EU-AU Research and Innovation Partnership on Renewable Energy

LEAP-RE STAKEHOLDER FORUM KIGALI, 10-13 OCTOBER 2023

The LEAP-RE project has received funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement 963530.